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We propose a Maxwellian-type initial density matrix for a quantum particle placed in an Ohmic environ-
ment. The resulting positional Brownian variance is analytically separated into a classical contribution of
Chandrasekhar, and a quantum correction term depending upon\ and the input width.

PACS number~s!: 05.40.1j

I. INTRODUCTION

Extensive literature exists on the theory of the Brownian
motion, both quantum@1–3# ~based on the Feynman-Vernon
type influence functionals and on the master equations! as
well as classical@4–6# ~employing the Langevin and Focker-
Planck equations!. Although the quantal basis of the Lange-
vin equation is well understood@2# yet, surprisingly, the
quantum-bath model authors have not explicitly discussed so
far the classical limit of their time-dependent Brownian
probabilities, and indeed their formalisms have certain limi-
tations in this context. For example, let us consider a quan-
tum harmonic oscillator subjected to a general environment
at a specified temperature, and look at the treatments of Refs.
@1–3#.

The reduced density matrix elementrp0
(xf ,xf ,t) derived

by Caldeira and Leggett@1# contains several rather compli-
cated, unevaluated, multiple integrals. Next, the positional
variancê q2& t at the thermal equilibrium calculated by Grab-
ert, Schramm, and Ingold@2# is, naturally, constant in time
but it cannot give information about the rich time depen-
dence of the variances at early epochs. Lastly, since the wave
packet taken by Hu, Paz, and Zhang@3# has no input mo-
mentum dependence, any additional structure with respect to
the temperature cannot enter their positional spreads(t)
even when a thermal velocity averaging is performed; and,
furthermore, their quoted expression fors(t) has serious
misprints. The aim of the present paper is to logically over-
come the said limitations of the bath models, enabling us
firstly to retrieve the well-known classical variances reported
by Chandrasekhar@4# and secondly to identify the explicit\
and width-dependent quantum corrections to these variances
assuming for simplicity Ohmic dissipation at high tempera-
tures.

II. THEORY

Consider a quantum oscillator of massM and renormal-
ized angular frequencyvR interacting via the coefficient of
friction g with an Ohmic bath specified by temperatureT and
a continuous spectrum having an upper cutoffV. Following
Caldeira and Leggett@1#, the reduced density matrix diago-
nal element is written as

rp0
~xf ,xf ,t !}expH 2N2~xf2p0/2N!2

2s0
2K1

21\C1
J , ~1!

wherexf is the position,t the time,p0 the input momentum
of an initial wave packet of widths0 centered at the origin,
v5~vR

22g2!1/2 the under-damped oscillator frequency, and

N5
Mv exp~gt !

2 sinvt
; K15

Mv cotvt1Mg

2
, ~2!

C15
\

8s0
2 1

Mg

p sin2vt E0
V

dnE
0

t

dtE
0

t

ds n coth

3S \n

2kTD sinv~ t2t!cosn~t2s!sinv~ t2s!

3exp@g~t1s!#. ~3!

This integral is left unevaluated in Ref.@1#. In order to un-
ravel the link of Eqs.~1!–~3! with Chandrasekhar’s@4# clas-
sical theory we proceed via the following steps.

Step~i!. By Ehrenfest’s theorem, the input wave packet is
an analog of a classical particle of initial positionxo50 and
simultaneous momentump0. Hence it is logical to assume
the initial distribution ofp0 to be Maxwellian corresponding
to the temperatureT, i.e., the initial density operatorr̂0 pro-
posed by us is

r̂0}E
2`

`

dp0expS 2p0
2

2MkTD uC0&^C0u, ~4!

whereuC0& is the standard minimum uncertainty wave packet
state@7# centered at the origin. From Eq.~1!, a straightfor-
ward Gaussian integration overp0 enables us to construct the
positional quantum Brownian probability densityP as

P~xf ,t !}E
2`

`

dp0expS 2p0
2

2MktD rp0
~xf ,xf ,t !, ~5!

}exp~2xf
2/2s2!, ~6!

with the exact quantum variance of the under-damped oscil-
lator as

s25
MkT

4N2 1
2s0

2K1
21C1

2N2 , ~7!

Step ~ii !. Next, we use the known fact@1–3# that in the
limit of the small Planck constant and high temperature, the
effective action of the bath models leads directly to the
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Langevin trajectories provided one replaces, inside the
fluctuation-dissipation kernels,

cothS \n

2kTD'
2kT

\n H 11
1

12 S \n

kTD 2J ; \n

kT
!1. ~8!

Going back to Eq.~3!, for fixed t and s with V→`,
we readily perform the n integration, remembering
that *0

`dn cosn(t2s)5pd(t2s) and *0
`dn n2 cosn(t2s)

52p]2d(t2s)/]t2. Next, we integrate trigonometrically
over t ands to obtain, after some rearrangement,

C15\/~8s0
2!1~2\vR

2sin2u!21MkTv2@$11e2

3~12g2/v2!%J112e2g2J2 /v
2#e2gt, ~9a!

u5vt; e25~\v/kT!2/12, ~9b!

J1512~11gv21sin2u12g2v22sin2u!e22gt, ~9c!

J2512~11gv21sin2u22 sin2u!e22gt. ~9d!

Step~iii !. Next, we substitute the values of the functions
N, K1, andC1 @cf. Eqs.~2!, ~9!# into Eq. ~7! to arrive at the
main finding of this paper, viz.

sho
2 5sho

cl21sho
qu2, ~10a!

sho
cl25~kT/MvR

2 !@12z2e22gt#, ~10b!

z5cosu1gv21sinu, ~10c!

sho
qu25

kT

Mv2 FMv2

kT S s0
2z21

\2sin2u

4M2v2s0
2De22gt

1e2H 12S 11
g

v
sin2u2

2g2

v2 sin2u De22gtJ G ,
~10d!

where the labelho stands for the harmonic oscillator. The

termsho
cl2 is the classical variance and it is very satisfying to

find that it coincides exactly with Langevin-equation based
result given by Chandrasekhar@4# for an over-damped oscil-
lator having parameters

b52g, b1522iv5~b224vR
2 !1/2. ~11!

Several properties of Eqs.~10! are worth mentioning for

t.0. The termsho
qu2 represents the quantum correction to the

variance arising from three causes, viz. finiteness of\, exist-
ence of an initial spreads0, and the spectral density param-
eter e of Eq. ~9b!. Next, Eq.~10d! shows thats ho

qu→` for
s0→` which is natural because the initial wave packet is
now too fuzzy. Also,s ho

qu→` if s0→0 which is expected@7#
because the initial state, now being a position eigenstate, has
infinite uncertainty in momentum. Clearly, in both these situ-
ations the probabilityP(xf ,t) given by Eq.~6! tends to be-
come position independent, implying that the variances de-
viate very significantly from the classical prediction both for
s0→0 ands0→`.

An important question now arise, viz. for what choice of
the parameters0 will our s ho

qu become negligible compared
to Chandrasekhar’ss ho

cl at all times? To answer this ques-
tion, we consider the case of theweakdamping~g!vR! and
recall that a quantum oscillator of angular frequencyv has a
ground state size of ordera05(\/Mv)1/2. Since the input
wave packet should, semiclassically, correspond to a large
oscillator quantum number, we expect its minimal width to
be measured bya0 itself, implying that

s05S \

Mv D 1/2O1 ; e5
\v

kT
O15

l2

s0
2 O1 , ~12!

wherel5~\2/MkT!1/2 is the thermal de Broglie wavelength,
and the symbolO1 denotes quantities oforder unity. Substi-
tuting the value ofs0 into Eq. ~10! we estimate

sho
cl25~kT/MvR

2 !@12O1e
22gt#, ~13a!

sho
qu25~kT/MvR

2 !@eO1e
22gt1e2$12O1e

22gt%#. ~13b!

Hence classical Brownian motion of the weakly damped os-
cillator becomes valid at all times providede!1, i.e.,l!s0,
i.e., \v!kT @cf. Eq. ~12!#.

Step~iv!. Finally, let us consider a free Brownian particle
labeled by the suffixf p. The corresponding quantum vari-
ance is deduced readily from Eq.~10! by taking the limit

vR→0, v→ ig and we obtains f p
2 5s f p

cl21s f p
qu2 where

s f p
ci25~kT/2Mg2!@2112gt1e22gt#, ~14a!

s f p
qu25

kT

Mg2 FMg2

kT H s0
21

\2~12e22gt!2

16M2g2s0
2 J

1ue f pu2$12~22e22gt!e22gt%G ~14b!

with ue f pu
25(\g/kT)2/12. It is again gratifying to find that

ours f p
cl2 exactly coincides with Chandrasekhar’s@4# classical

expression in the one-dimensional case~when^p 0
2&5kT/M !.

Also, a sufficient condition for the quantum correction to the
variance to be negligible is to set

s05S \

Mg D 1/2O1 ; ue f pu5
\g

kT
O15

l2

s0
2 O1!1. ~15!

III. CONCLUSIONS

Our formalism based on Eqs.~5!–~15! is not available in
the existing literature on the quantum Brownian probabilities
of either the harmonic oscillator or the free particle. Briefly
speaking, we have achieved five things:~A! a Maxwellian-
type initial density matrixr̂0 has been used;~B! the compli-
cated triple integral functionC1 appearing in the work of
Caldeira and Leggett@1# has been analytically evaluated;~C!
from the positional quantum variance the classical contribu-
tion scl2, which exactly agrees with that of Chandrasekhar
@4#, has been extracted;~D! the quantum correction piece
squ2 depending explicitly on the input width has been iden-
tified, and~E! the conditions for the validity of the classical

5478 53BRIEF REPORTS



motion have been mentioned in terms of the ratio of the
thermal de Broglie wavelength to the input width.

Before ending, we wish to point out that the
quantum→classical picture of the Brownian movement can-
not be successfully achieved if the initial state is prepared in
any other manner different from ourr̂0 in Eq. ~5!. Indeed,
the uses of the equilibrium density matrix@2# or momentum-
independent input wave packets@3# have certain limitations
with regard to the time or temperature dependence of the

Brownian probabilities, as mentioned above in the Introduc-
tion.

ACKNOWLEDGMENTS

V.J.M. thanks the University Grants Commission~New
Delhi! and N. Chanana thanks the Council of Scientific and
Industrial Research for financial support.

@1# A. O. Caldeira and A. J. Leggett, Physica A121, 587 ~1983!.
In particular, note their Eqs.~6.12, 6.20, 6.21, 6.31!.

@2# H. Grabert, P. Schramm, and G. L. Ingold, Phys. Rep.168,
116 ~1988!. In particular, note their Eqs.~4.43, 6.62!.

@3# B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D45, 2843
~1992!. In particular, note their Eq.~3.20!.

@4# S. Chandrasekhar, Rev. Mod. Phys.15, 1 ~1943!. In particular,
note his Eqs.~1758, 206, 217!.

@5# N. G. Van Kampen,Stochastic Processes in Physics and
Chemistry~North-Holland, Amsterdam, 1981!, pp. 217, 237,
247.

@6# C. W. Gardiner,Handbook of Stochastic Methods~Springer-
Verlag, Berlin, 1985!, pp. 2, 6, 208.

@7# L. I. Schiff, Quantum Mechanics~McGraw-Hill, New York,
1968!, p. 60.

53 5479BRIEF REPORTS


