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Classical limit of quantum Brownian probability

Namrata Chanana, Vairelil J. Menon, and Yashwant Singh
Department of Physics, Banaras Hindu University, Varanasi 221 005, India
(Received 11 October 1995

We propose a Maxwellian-type initial density matrix for a quantum particle placed in an Ohmic environ-
ment. The resulting positional Brownian variance is analytically separated into a classical contribution of
Chandrasekhar, and a quantum correction term depending/upad the input width.

PACS numbds): 05.40:+j

[. INTRODUCTION wherex; is the positiont the time,p, the input momentum
of an initial wave packet of widtlo, centered at the origin,
Extensive literature exists on the theory of the Browniano=(w3—1)"? the under-damped oscillator frequency, and
motion, both quanturil—3] (based on the Feynman-Vernon

type influence functionals and on the master equaltiass _ Mo expyt) K :Mw Colwt+ My @)
well as classical4—6] (employing the Langevin and Focker- 2 sinwt  ’ ! 2 '
Planck equations Although the quantal basis of the Lange-

vin equation is well understoof] yet, surprisingly, the h My Q t t

guantum-bath model authors have not explicitly discussed so Cl:gT,SjL 7 sifwt Jo dv odT Ods v coh

far the classical limit of their time-dependent Brownian
probabilities, and indeed their formalisms have certain limi-
tations in this context. For example, let us consider a quan- X

hv
—) Sinw(t— 7)cosv(7—S)sinw(t—s)

2kT
tum harmonic oscillator subjected to a general environment
at a specified temperature, and look at the treatments of Refs. Xexg y(r+9)]. 3)
[1-3].

by Caldeira and Leggeftl] contains several rather compli- rqvell ttr?e link of Eqs(l)a(S) V‘{'rt]h ?Tland.raserhar B clas-
cated, unevaluated, multiple integrals. Next, the positiona?'cgt ((a.c;rwaeErE)rocfeet, VL‘;’: elo ?r\:vmg steps. ket i
variance(qz)t at the thermal equilibrium calculated by Grab- epll). by Ehrentests theorem, the inpu y\(avi packetis
ert, Schramm, and Ingolf2] is, naturally, constant in time an analog of a classical particle of '.n'f['al pO_SItI&[;I—O and
but it cannot give information about the rich time depen_smultaneous momenturp,. Hence it is logical to assume

dence of the variances at early epochs. Lastly, since the wa\}Qe initial distribution_ 0fppg to .b(.a_MaxweI.Iian corresyonding
packet taken by Hu, Paz, and Zhaf&] has no input mo- 16 the temperatur@, i.e., the initial density operatgi® pro-

mentum dependence, any additional structure with respect l%osed by us is

the temperature cannot enter their positional spreéi) - —p2
even when a the_rmal velocity aver_aging is performe_d; and, i)oxf dpoeX[<2MkoT) | wONWO, (4)
furthermore, their quoted expression foft) has serious -

misprints. The aim of the present paper is to logically over- O : . )

come the said limitations of the bath models, enabling uvhere[¥") is the standard minimum uncertainty wave packet
firstly to retrieve the well-known classical variances reportecSt@te[7] centered at the origin. From E(1), a straightfor-

by Chandrasekhd#] and secondly to identify the explict warq_Gaussmn integration oveg enabI_e; us to construct the
and width-dependent quantum corrections to these varianc®9Sitional quantum Brownian probability dens®yas
assuming for simplicity Ohmic dissipation at high tempera- 2

* ~Po
tures. -
P(X¢,t)o fﬁmd poeXF< SMKt

Il. THEORY

ppo(xf 1 Xt 1t)1 (5)

xexpl — x2/202), (6)
Consider a quantum oscillator of malss and renormal- ) ) )
ized angular frequencyy, interacting via the coefficient of with the exact quantum variance of the under-damped oscil-
friction y with an Ohmic bath specified by temperatdrand ~ 'ator as
a continuous spectrum having an upper cufoffFollowing 2,2
; ; i i MKT 20pKi+C
Caldeira and Leggeftl], the reduced density matrix diago- 2_ o™1' ™1

= , 7
nal element is written as T T AN? 2N? @)

— N2(x(— pg/2N)? Step(ii). Next, we use the known fa¢i—3] that in the
Pp. (Xt Xt ,t)ocexp[ - fz Po 7 (1) limit of the small Planck constant and high temperature, the
0 200K1+7Cy effective action of the bath models leads directly to the
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Langevin trajectories provided one replaces, inside the An important question now arise, viz. for what choice of

fluctuation-dissipation kernels,

thﬁv Zlelﬁvz_ﬁvl 8
cohl ST~ 7% 1Y kT | st @

Going back to Eq.(3), for fixed » and s with Q—oo,
we readily perform the v integration,
that [5dv cos(7—s)=m8(7—s) and [5dv 1 cos/(7—5)

=—md*8(7—s)ldr*. Next, we integrate trigonometrically

over r ands to obtain, after some rearrangement,

C,1=1/(8073) + (2h wisir?6) *MkTw?[{1+ €

X (1= y? 0?)} 3, + 2€2923, | 02 ]e?™, (9a)
=wt; €’=(hw/kT)?/12, (9b)
J1=1—(1+ yo 'sin20+2y°w 2sirff)e 2", (90
Jo=1—(1+ yw 1sin20—2 sirf)e 2", (9d)

remembering

the parameterr, will our ol become negligible compared
to Chandrasekhar's-$\ at all times? To answer this ques-
tion, we consider the case of theeakdamping(y<wg) and
recall that a quantum oscillator of angular frequeackas a
ground state size of order,=(A/Mw)*2 Since the input
wave packet should, semiclassically, correspond to a large
oscillator quantum number, we expect its minimal width to

be measured by, itself, implying that

h
77 Mo
wherex=(#4MkT)*? is the thermal de Broglie wavelength,

and the symboD; denotes quantities afrder unity. Substi-
tuting the value ofoy into Eq. (10) we estimate

fiw A2

1/2
) Ol’ E:ﬁolzo__(z) Ol’ (12)

o= (KTIMwB)[1— 0,6~ 2"], (139
o0 = (KT/M w2)[ €06~ 2"+ €2{1— 0,6 2"}]. (13D

Hence classical Brownian motion of the weakly damped os-

Step (i ). Next, we substitute the values of the functions gjllator becomes valid at all times provideek1, i.e.,\ <oy,

N, K;, andC; [cf. Egs.(2), (9)] into Eq.(7) to arrive at the
main finding of this paper, viz.

2

O'ﬁo= Uﬁ|§+ ape (10a
o= (KTIMwB)[1— {2621, (10b)
{=co9+ yo 'sing, (100

2 2ai
i kKT [Mo 22 h2sirt o o2
o™ Mw? | kT |7% " 4M2w?0}
2 2
+e2l1- 1+Zsin20—lzsin20)e—27tH,
w w

(10d)

i.e., io<kT [cf. Eq.(12)].

Step(iv). Finally, let us consider a free Brownian particle
labeled by the suffi¥p. The corresponding quantum vari-
ance is deduced readily from E@LO) by taking the limit

. . 2 2
wg—0, @—iy and we obtairo,= oy + ofl” where

G =(KTI2MP) [~ 1+29t+e 2], (143
a2 KT [M‘yz( ) h2(1—e—27‘)2}
g =5 | 7= |0, Y5 5 5
P My2| KT |70 16M3)202
+erplH{1—(2—e e 27 (14b)

with |eq,|*= (4 ¥/kT)%/12. It is again gratifying to find that
|2

our of,

exactly coincides with Chandrasekhaq classical

where the labeho stands for the harmonic oscillator. The expression in the one-dimensional casten(p§)=kT/M).

cl?
term Tho

find that it coincides exactly with Langevin-equation base
result given by Chandrasekhia] for an over-damped oscil-

lator having parameters

B=2y, Pi1=—2iw=(B*-4wd)"> (12)

Several properties of Eqg$10) are worth mentioning for
2 .
t>0. The termofly represents the quantum correction to the

variance arising from three causes, viz. finiteness, @xist-

ence of an initial spread,, and the spectral density param-

eter e of Eq. (9b). Next, Eq.(10d) shows thatofi—co for

op— which is natural because the initial wave packet is

now too fuzzy. Alsoofg—x if o;—0 which is expectefi7]

because the initial state, now being a position eigenstate, h
infinite uncertainty in momentum. Clearly, in both these situ-

ations the probability?(x;,t) given by Eq.(6) tends to be-

is the classical variance and it is very satisfying toAlso, a sufficient condition for the quantum correction to the
gvariance to be negligible is to set

h 1/2 ft}/ }\2
o= M_y . —

)

IIl. CONCLUSIONS

Our formalism based on Eqé&)—(15) is not available in
the existing literature on the quantum Brownian probabilities
of either the harmonic oscillator or the free particle. Briefly
speaking, we have achieved five thinga) a Maxwellian-
type initial density matrixp° has been usedB) the compli-
cated triple integral functiorC, appearing in the work of
C‘saldeira and Leggetltl] has been analytically evaluatgd;)

$rom the positional guantum variance the classical contribu-

tion crc'z, which exactly agrees with that of Chandrasekhar

come position independent, implying that the variances del4]. has been extractedD) the quantum correction piece
viate very significantly from the classical prediction both for o9 depending explicitly on the input width has been iden-
00—0 andopy—. tified, and(E) the conditions for the validity of the classical
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motion have been mentioned in terms of the ratio of theBrownian probabilities, as mentioned above in the Introduc-
thermal de Broglie wavelength to the input width. tion.

Before ending, we wish to point out that the
guantum-classical picture of the Brownian movement can-

not be successfully achieved if the initial state is prepared in ACKNOWLEDGMENTS
any other manner different from og&“ in Eq. (5). Indeed,
the uses of the equilibrium density matf] or momentum- V.J.M. thanks the University Grants Commissifdew

independent input wave packd®] have certain limitations Delhi) and N. Chanana thanks the Council of Scientific and
with regard to the time or temperature dependence of théndustrial Research for financial support.
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